Approximate solution for a class of hypersingular integral equations
نویسندگان
چکیده
منابع مشابه
Approximate solution of dual integral equations
We study dual integral equations which appear in formulation of the potential distribution of an electrified plate with mixed boundary conditions. These equations will be converted to a system of singular integral equations with Cauchy type kernels. Using Chebyshev polynomials, we propose a method to approximate the solution of Cauchy type singular integral equation which will ...
متن کاملexistence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types
بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی بیان شده اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...
15 صفحه اولapproximate solution of dual integral equations
we study dual integral equations which appear in formulation of the potential distribution of an electrified plate with mixed boundary conditions. these equations will be converted to a system of singular integral equations with cauchy type kernels. using chebyshev polynomials, we propose a method to approximate the solution of cauchy type singular integral equation which will ...
متن کاملApproximate solution of singular integral equations
K e y w o r d s I n t e g r a l equations, Cauchy type, Singular kernels. 1. I N T R O D U C T I O N Singular integral equations of the first kind, with a Cauchy type singular kernel, over a finite interval can be represented by the general equation f f _ l f(t)[ko(t,x)+k(t,x)]dt = g(x), 1 < x < 1, (1.1) 1 where ko(t, x) x) t) 0) (1.2) t x ' and k are regular square in tegrab le funct ions of t...
متن کاملApproximate Solution of Linear Volterra-Fredholm Integral Equations and Systems of Volterra-Fredholm Integral Equations Using Taylor Expansion Method
In this study, a new application of Taylor expansion is considered to estimate the solution of Volterra-Fredholm integral equations (VFIEs) and systems of Volterra-Fredholm integral equations (SVFIEs). Our proposed method is based upon utilizing the nth-order Taylor polynomial of unknown function at an arbitrary point and employing integration method to convert VFIEs into a system of linear equ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics Letters
سال: 2006
ISSN: 0893-9659
DOI: 10.1016/j.aml.2006.01.013